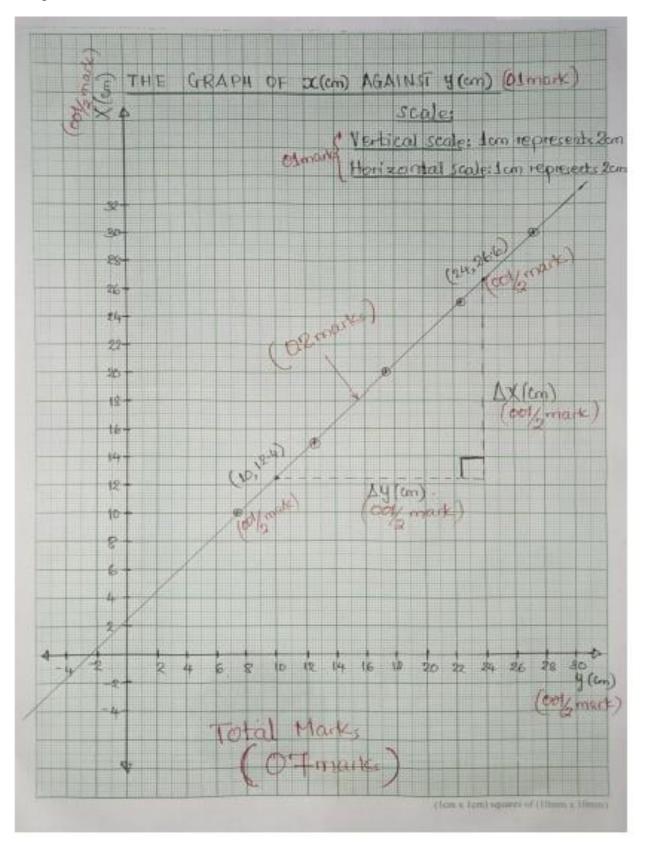
CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC)

NORTHEN ZONE JOINT EXAMINATIONS SYNDICATE (NZ-JES)

FORM FOUR PRE-NATIONAL EXAMINATIONS AUGUST 2024


PHYSICS 2B ACTUAL PRACTICAL B MARKING SCHEME

1:

(i) Table of results: (10 Marks)

x(cm)	$y(cm) \pm 0.5$				
10	7.5				
15	12.5				
20	17.5				
25	22.5				
30	27.5				

(ii) Graph (Total Marks 07 Marks)

Page **2** of **5**

(iii) slope (s) =
$$\frac{\Delta x (cm)}{\Delta y (cm)} \leftarrow \frac{01}{2} mark$$
$$S = \frac{x_2 - x_1}{y_2 - y_1} \leftarrow \frac{01}{2} mark$$
$$S = \frac{26.6 - 12.4}{24 - 10} \leftarrow \frac{01}{2} mark$$
$$S = \frac{14.2}{14} \leftarrow \frac{01}{2} mark$$
$$S = 1.01 \approx 1$$

\therefore The slope $(s) = 1 \leftarrow 01 \, mark$

(iii) From the principle of moments:

$$\sum C.Ms = \sum A.C.Ms \leftarrow \frac{01}{2} mark$$

$$100x = 50a + my \leftarrow \frac{01}{2} mark$$

$$\therefore x = \left(\frac{m}{100}\right) y + \frac{a}{2} \quad or \quad x = \left(\frac{m}{100}\right) + 2.5 \quad \leftarrow 02 mark$$

(iv) From the equation above:

Slope (s) =
$$\frac{m}{100}$$

$$1 = \frac{m}{100} \leftarrow \frac{01}{2} mark$$

By crossing multiplication.

$$m = 100g$$

\therefore The unknown mass (m) = 100g ← 01 mark

2. (f) Table of results

Potential difference (v)	0.08	0.10	0.11	0.12	0.14	0.16
Length (cm)	10	20	30	40	50	60

@ 01 mark Total 06marks

(g) The slope, S, from the graph

Slope =
$$\frac{\Delta V(vot)}{\Delta L(cm)}$$
 01 mark

Point to from the graph A (48, 0.14) and B (24, 0.10)

Slope =
$$\frac{0.14 - 0.1 \text{ (v)}}{48 - 24 \text{ (cm)}} = 1.6 \text{ x } 10^{-3} \text{ v/cm } 01 \text{ mark}$$

The Slope, S, of the graph is 1.6×10^{-3} V/cm

01 mark

- (h) The nature of the graph was straight line.
- 01 mark

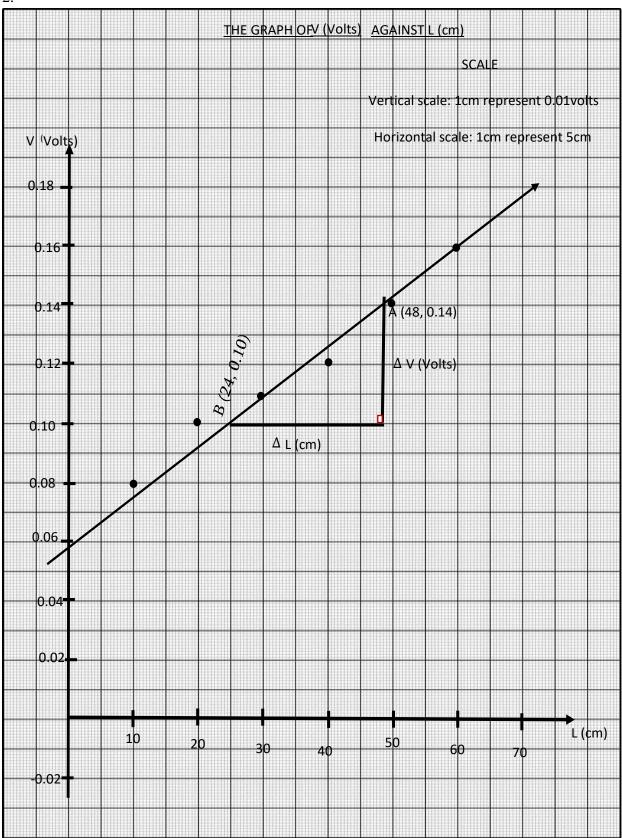
(i) Thus $R \alpha L$

01 mark

Also from ohms law; V=IR

$$I = \frac{V}{R} = \frac{V}{KL} = \frac{V}{L} X \frac{1}{K} = \text{Slope } X \frac{1}{K}$$

$$Slope=IK$$


Thus the slope of the line represent current I, I was current and R was resistance. **01 mark**

- (k) The aim of this experiment was to show that ohm's law could be expressed in terms of length of conductor, the method used was potential divider.

 O2 mark
- (L) Two expected sources of errors were;
- (i)Loose connections, this can be reduced by securing all connection of the circuit.

 02 mark
- (ii)Sliding a jockey contact continuously over the wire of potentiometer instead of touching it at various positions until the required voltage is obtained.

 02 mark

Page **5** of **5**